Huntington Beach, CA 92648 (714) 969-0255 E-mail: pieroil@socal.rr.com

December 28, 2015

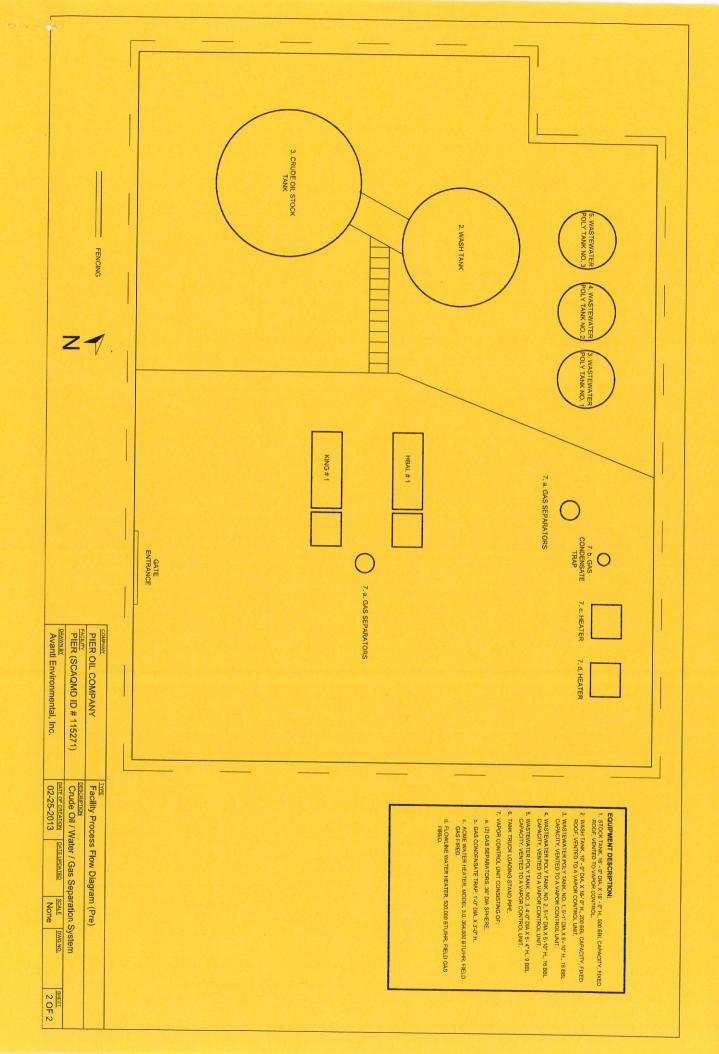
Joshua Cwikla Los Angeles Regional Water Quality Control Board 320 W. Fourth Street Los Angeles, CA 90013

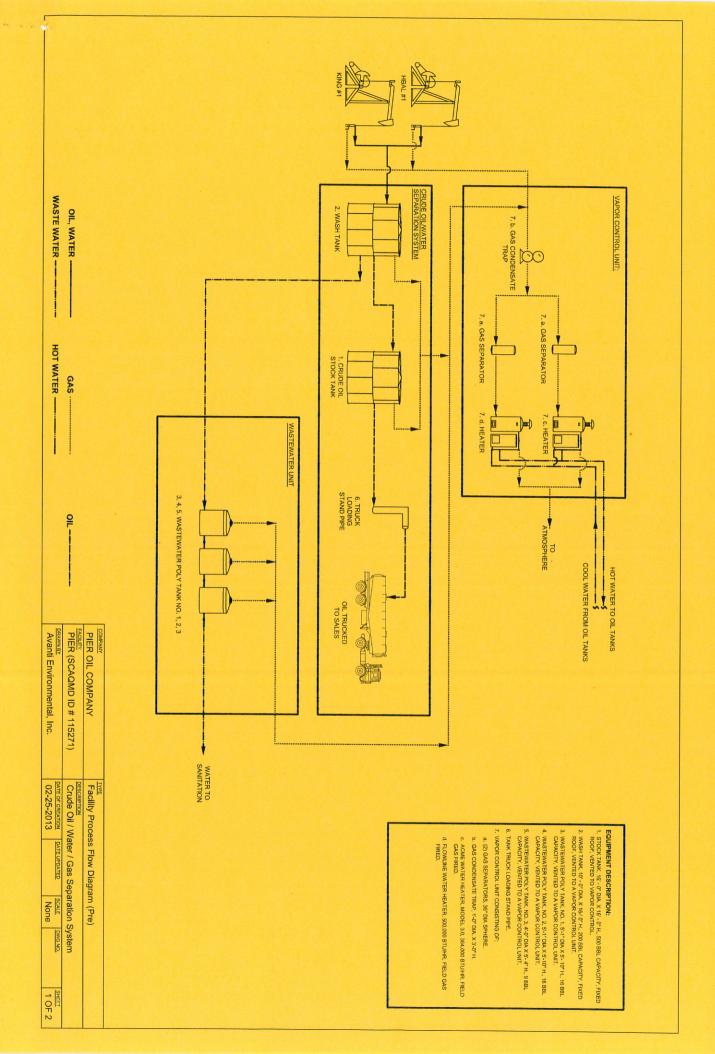
Dear Mr. Cwikla,

Pursuant to our telephone conversation today where we discussed the certified letter Pier Oil Company, Inc. received from the LA Regional Water Quality Control Board dated December 18, 2015, I submit the following:

1) Pier Oil Company, Inc. has no oil property in the LA District.

2) Pier Oil Company, Inc. operates only two oil wells located in downtown Huntington Beach located at 201 2nd Street. These two oil wells are located on a 50' X 115' (5750 square foot) area in the town lot section of the HB field in district 1.


3) Pier Oil Company, Inc. does not operate any sumps or pits on its site in Huntington Beach and there is no evidence that any historical sumps or pits ever existed on its site.


4) Pier Oil Company, Inc. has a type I permit from the Orange County Sanitation District allowing the discharge of all waste water produced to the sewer which is monitored monthly for volume. Quarterly samples are taken by OCSD and by Pier Oil Company which are then processed by a third party for TTO and Oil and Grease. No contaminants have been produced in these samples processed by either of the two entities.

In conclusion, it is safe to say that Pier Oil Company, Inc. complies with all provisions of section 13267 of the California Water Code. All records to support this are available from the Orange County Sanitation District.

Please accept last quarters test results of water analysis from the OCSD and a copy of my site plan as validation of the statement above which complies with your request during our conversation.

Encl. 2

Orange County Sanitation District 10844 Éllis Avenue Fountain Valley, California 92708-7018 (714) 962-2411

Source Control Division

WASTEWATER ANALYSIS REPORT

PIER OIL COMPANY, INC. 2108 PACIFIC COAST HWY. HUNTINGTON BEACH, CA 92648

Attention: WILLIAM K. VOGT

EVENT NO

: 19949

REPORT DATE

: 10/7/2015

PERMIT NO LAB NO.

: 58-1-178

INSPECTOR

: 1860776

ENGINEER

TF

: JT

SAMPLE TYPE

: 2

Your wastewater discharge was sampled and the results are as follows:

Sample Date: 9/11/2015 9:15:00 AM

Composite Hours:0

Time: 0915

Sample Point: a sample port after the

last clarifier

Actual Discharge : MGD (Million Gallons/Day)

Mass Emission Rate Flow Base: 0.000 MGD (Million Gallons/Day)

Effective:

Constituents		- minimumpiarianananananananananananananananananan	Over Limit mg/L lbs/Day	Violation Percent Over	Violation Type
TSS	47			0.0	
BODT	< 20		0.00	0.0	

Please address any questions concerning this report to Jamie Malpede at 714-593-7504. REVIEWED BY

Green Sheet # Permit 58-1-178 PIER OIL COMPANY, INC. 1860776 Received in Lab 9/11/2015 2:06:47 PM at 2.8°C Lab Released Date 9/18/2015 4:43:37 PM LIMS # 1860776 Collected by Tim Foley BOD T Method: SM 5210 B Lab Method Code: BOD_T BOD T < 20 MG_L Lab Method Code: TSS Suspended Solids Method: SM 2540 D TSS 47 MG_L

Orange County Sanitation District 10844 Ellis Avenue Fountain Valley, California 92708-7018 (714) 962-2411

Source Control Division

WASTEWATER ANALYSIS REPORT

PIER OIL COMPANY, INC. 2108 PACIFIC COAST HWY.

HUNTINGTON BEACH, CA 92648

Attention: WILLIAM K. VOGT

EVENT NO

: 19949

REPORT DATE **PERMIT NO**

: 10/7/2015 : 58-1-178

LAB NO.

: 1860777

INSPECTOR

: TF

ENGINEER

: JT

SAMPLE TYPE

: 2

Your wastewater discharge was sampled and the results are as follows:

Sample Date: 9/11/2015 9:10:00 AM Composite Hours:0

Time: 0910

Sample Point: a sample port after the

last clarifier

Actual Discharge : MGD (Million Gallons/Day)

Mass Emission Rate Flow Base : 0.000 MGD (Million Gallons/Day)

Effective:

Constituents

Discharge mg/L lbs/Day

Permit Limit mg/L Ibs/Day

Over Limit mg/L lbs/Day

Violation Percent Over

Violation Туре

O&G min.

2.300

0.0

Please address any questions concerning this report to Jamie Malpede at 714-593-7504. **REVIEWED BY**

 Green Sheet #
 1860777
 Permit 58-1-178
 PIER OIL COMPANY, INC.

 LIMS # 1860777
 Collected by Tim Foley
 Received in Lab 9/11/2015 2:06:47 PM at 2.8°C
 Lab Released Date 10/6/2015 4:46:52

 Oil & Grease
 Method: EPA 1664B
 Lab Method Code: OG_1664_SGT

 O&G min.
 2.300 MG_L

Orange County Sanitation District 10844 Éllis Avenue Fountain Valley, California 92708-7018 (714) 962-2411

Source Control Division

WASTEWATER ANALYSIS REPORT

PIER OIL COMPANY, INC. 2108 PACIFIC COAST HWY.

HUNTINGTON BEACH, CA 92648

Attention: WILLIAM K. VOGT

EVENT NO

: 19949

REPORT DATE PERMIT NO

: 10/7/2015

LAB NO.

: 58-1-178 : 1860778

INSPECTOR

: TF

ENGINEER

: JT

SAMPLE TYPE

: 2

Your wastewater discharge was sampled and the results are as follows:

Sample Date: 9/11/2015 9:05:00 AM

Composite Hours:0

Time: 0905

Sample Point: a sample port after the

last clarifier

Actual Discharge : MGD (Million Gallons/Day)

Mass Emission Rate Flow Base: 0.000 MGD (Million Gallons/Day)

Effective:

		Discharge		Pe	rmit Limit	0	ver Limit	Violation	Violation
Constituents		mg/L	lbs/Day	mg/L	Ibs/Day	mg/L	Ibs/Day	Percent Over	Туре
Total Toxic Organics	<	0.000		0.58		0.00		0.0	
624_SC_ACR	<	0.000				0.00		0.0	
624_SC		0.256						0.0	

Please address any questions concerning this report to Jamie Malpede at 714-593-7504. REVIEWED BY

Green Sheet #	1860778	Permit 58-1-178	PIER OIL COMPANY, INC.
LIMC # 1000770	Callacted by Tim Folor	Paceived in Lah 9/	1/2015 2:06:47 DM at 2:8°C Lish Released Date 0/23/2015 9:55:44

IMS # 1860778	Collected by Tim Foley		Received in Lab	9/11/2015	5 2:06:47 PM at 2.8°C	Lab Rele	ased Date 9/23
Purgeable Organi	c Compounds, GC/MS				Lab Method Code:	624_SC	
1,1,1,2-tetrachic	proethane		< 42.000	UG_L			
1,1,1-trichloroet	hane		< 75.600	UG_L			
1,1,2,2-tetrachlo	proethane		< 36.000) UG_L			
1,1,2-trichloroet	hane		< 33.200	UG_L			
1,1,2-trichlorotri	fluoroethane		< 95.200	UG_L			
1.1-dichloroetha	ine		< 20.400	UG_L			
1,1-dichloroethe	ene		< 29.600	UG_L			
1,1-dichloroprop	pene		< 84.000) UG_L			
1,2,3-trichlorobe	enzene		< 41.600) UG_L			
1,2,3-trichloropr	opane		< 31.200	UG_L			
1,2,4-trichlorobe	enzene		< 50.400	UG_L			
1,2,4-trimethylb	enzene		69.100) UG_L			
1,2-dibromo-3-c	hloropropane		< 39.600	UG_L			
1,2-dibromoetha	ane		< 39.600) UG_L			
1,2-dichloroben	zene		< 43.200) UG_L			
1,2-dichloroetha	ane		< 36.800) UG_L			
1,2-dichloroprop	oane		< 36.400	UG_L			
1,3,5-trichlorobe	enzene		< 50.000	UG_L			
1,3,5-trimethylb	enzene		< 53.200	UG_L			
1.3-dichloroben	zene		< 51.600	UG_L			
1,3-dichloroprop	pane		< 36.000	UG_L			
1,4-dichloroben	zene		< 42.400	UG_L			
1-chloro-2-fluor	obenzene		< 49.200	UG_L			
2,2-dichloroprop	pane	4	140.000	UG_L			
2-butanone			221.000	UG_L			
2-chloroethylvin	nyl ether		< 38.800	UG_L			
2-chlorotoluene			< 48.800	UG_L			
2-hexanone			< 53.200	UG_L			
4-chlorotoluene			< 68.800	O UG_L			
4-isopropyltolue	ene		< 71.200	O UG_L			
4-methyl-2-peni	tanone		< 50.000	O UG_L			
MTBE			< 103.000	O UG_L			
acetone			< 204.000	O UG_L			
acrolein			< 78.800	O UG_L			
acrylonitrile			< 38.000	0 UG_L			
benzene			< 60.400	0 UG_L			
bromobenzene			< 40.800	O UG_L			
bromochlorome	ethane		< 42.000	O UG_L			
bromodichloron	nethane		< 46.400	0 UG_L			
bromoform			< 38.800	0 UG_L			
bromomethane			< 60.400	0 UG_L			
carbon disulfide	2		< 260.000	0 UG_L			
carbon tetrachle	oride		< 22.800	0 UG_L			
chlorobenzene			< 48.000	0 UG_L			

chloroethane	<	35.200 UG_L		
chloroform	≪	56.000 UG_L		
chloromethane	<	69.200 UG_L		
cis-1,2-dichloroethene	<	55.600 UG_L		
cis-1,3-dichloropropene	«	57.600 UG_L		
cyclohexane	<	88.000 UG_L		
dibromochloromethane	<	46.000 UG_L		
dibromomethane	<	34.400 UG_L		
dichlorodifluoromethane	<	146.000 UG_L		
ethyl acetate	<	130.000 UG_L		
ethylbenzene	<	56.000 UG_L		
hexachlorobutadiene	<	75.600 UG_L		
isopropyl acetate	<	88.800 UG_L		
isopropyl ether	*45	44.800 UG_L		
isopropylbenzene	«	56.800 UG_L		
m,p-xylenes		122.000 UG_L		
methyl formate	<	480.000 UG_L		
methyl tert-pentyl ether	<	32.800 UG_L		
methylene chloride	**	54.800 UG_L		
n-amyl acetate	<	140.000 UG_L		
n-butyl acetate	<	141.000 UG_L		
n-butylbenzene	<	73.200 UG_L		
n-heptane	<	146.000 UG_L		
n-hexane	«	114.000 UG_L		
n-pentane	<	88.800 UG_L		
n-propylbenzene	<	58.400 UG_L		
naphthalene	<	32.000 UG_L		
o-xylene		64.800 UG_L		
sec-butylbenzene	<	65.200 UG_L		
styrene	<	47.600 UG_L		
tert-butyl alcohol	<	277.000 UG_L		
tert-butyl ethyl ether	<	37.600 UG_L		
tert-butylbenzene	<	63.600 UG_L		
tetrachloroethene	<	29.200 UG_L		
tetrahydrofuran	<	74.000 UG_L		
toluene	<	64.000 UG_L		
trans-1,2-dichloroethene	<	24.800 UG_L		
trans-1,3-dichloropropene	<	50.400 UG_L		
trichloroethene	<	68.000 UG_L		
trichlorofluoromethane	<	106.000 UG_L		
vinyl acetate	<	140.000 UG_L		
vinyl chloride	<	39.600 UG_L		

Enthalpy Analytical, Inc.

Formerly Associated Labs 806 N. Batavia - Orange, CA 92868 Tel: (714)771-6900 Fax: (714)538-1209 www.associatedlabs.com info-sc@enthalpy.com

Pier Oil Co.

2108 PCH

Huntington Beach, CA 92648

Attn:

Bill Vogt

Comments: Tank Farm

Lab Request:

360926

Report Date:

10/08/2015 Date Received: 10/01/2015

Client ID:

14592

This laboratory request covers the following listed: samples which were analyzed for the parameters indicated on the attached Analytical Result Report. All analyses were conducted using the appropriate methods. Methods accredited by NELAC are indicated on the report. This cover letter is an integral part of the final report.

Sample #

Client Sample ID

360926-001

Thank you for the opportunity to be of service to your company. Please feel free to call if there are any questions regarding this report or if we can be of further service.

Report Review performed by Jennifer Wu, QA/QC Scientist

NOTE. Unless notified in writing, all samples will be discarded by appropriate disposal protocol 45 days from date reported

The reports of the Enthalpy Analytical, linc, are confidential property of our clients and may not be reproduced or used for publication in part or in full without our written permission. This is for the mutual protection of the public, our clients, and ourselves.

Matrix: Water Client: Pier Oil Co. Callector: Client Sampled: 10/01/2015 10:00 Sito: Sample #: 360926-001 Client Sample #: #1 Sample Type: Analyte Result DF RDL Units Prepared Analyzed By Notes QCBatch(D Total Oil and Grease 16.7 mg/L 10/05/15 10/05/15 RB

QCBatchID: QC1158529 Analyst: rybechay Method: EPA 1664A Matrix: Water Analyzed: 10/05/2015 Instrument: CHEM (group) Blank Summary Blank Analyte Result Units RDL Notes QC1158529MB1 Total Oil and Grease ND mg/L 5 Lab Control Spike/ Lab Control Spike Duplicate Summary Spike Amount Spike Result Recoveries Limits Analyte LCS LCSD LGS LGSD Units LCS LCSD RPD %Rec RPO Notes OC1158529LCS1_OC1158529LCSD4

Analyte	Amount	MS	MSD	MS	MSD	Units	MS	MSD	ppn	% Rac	RPD	Notes
	Sample	Spike	Amount	Spike	Result		Reco	venes	ATTORCHEDOLOGICA	Limit	¢	SUSSESSED AND AND ASSESSED AND ASSESSED
The street white and the street was a street with the street was a street with the street with the street was a street was a street with the street was a street with the street was a street with the street was a street with the street was a street wa	Mat	rix Sp	ike/Mati	rix Spik	e Dupli	cate Sun	nmary	****************		CONTRACTOR DESCRIPTION OF THE PARTY.	**************************************	100 C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Total Oil and Grease		40	40	37.1	42.5	mg/L	93	106	14	78-114	18	
Total Oil and Grease		40	40	37.1	42.5	mg/L	93	106	14	78-114	18	

6.0

9.3

mg/L

Source: 360943-001

78-114 18

43.1

QC1158529MS1, QC1158529MSD1

3.3

20

20

Total Oil and Grease